পৃথিবীর বায়ুমণ্ডল

পৃথিবীর বায়ুমণ্ডলের গঠন পরিমাণ অনুসারে। নিচের পাই চার্টটি সন্ধান পাওয়া গ্যাসসমূহের দ্বারা ০.০৩৮% বায়ুমন্ডল গঠিত তা প্রকাশ করছে।এই পরিমাণ বিভিন্ন বছর থেকে সংগ্রহিত (প্রধানত কার্বন ডাই-অক্সাইড ১৯৮৭ সালে এবং মিথেন ২০০৯ সালে) এবং কোন একক উৎস নির্দেশ করে না।

পৃথিবীর বামুমণ্ডল বলতে পৃথিবীকে চারপাশে ঘিরে থাকা বিভিন্ন গ্যাস মিশ্রিত স্তরকে বুঝায়, যা পৃথিবী তার মধ্যাকর্ষণ শক্তি দ্বারা ধরে রাখে। একে আবহমণ্ডল-ও বলা হয়। এই বায়ুমন্ডল সূর্য থেকে আগত <u>অতিবেগুনি রিশ্রি</u>শোষণ করে পৃথিবীতে জীবের অস্তিত্ব রক্ষা করে। এছাড়ও তাপ ধরে রাখার মাধ্যমে (<u>গ্রীনহাউজ প্রতিক্রিয়া</u>) ভূপৃষ্টকে উত্তপ্ত করে এবং দিনের তুলনায় রাতের তাপমাত্রা হ্রাস করে।

শ্বাস-প্রশ্বাস ও <u>সালোকসংশ্লেষণের</u> জন্য ব্যবহৃত <u>বায়ুমন্ডলীয় গ্যাসসমূহের</u> প্রদত্ত প্রচলিত নাম <u>বায়ু</u> বা বাতাস।পরিমাণের দিক থেকে শুষ্ক বাতাসে ৭৮.০৯% <u>নাইটোজেন,</u>২০.৯৫% <u>অক্সিজেন, ৩০.৯৬% আর্গন, ০০.৯৬% কার্বন ডাইঅক্সাইড</u> এবং সামান্য পরিমাণে অন্যান্য গ্যাস খাকে।বাতাসে এছাড়াও পরিবর্তনশীল পরিমাণ <u>জলীয় বাষ্প্র রয়ে</u>ছে যার গড় প্রায় ১%।বাতাসের পরিমাণ ও বায়ুমন্ডলীয় চাপ বিভিন্ন স্তরে বিভিন্ন রকম হয়, শ্বলজ উদ্ভিদ ও শ্বলজ প্রাণীর বেঁচে খাকার জন্য উপযুক্ত বাতাস কেবল পৃথিবীর উপোমণ্ডল এবং কৃত্রিম বায়ুমণ্ডলসমূহে পাওয়া যাবে।

বামুমন্ডলের ভর হচ্ছে প্রায় ৫×১০ কিজি, যার তিন চতুর্থাংশ পৃষ্ঠের প্রায় ১১ <u>কিলোমিটারের</u> (৩৬,০০০ ফুট ৬.৮ মাইল) মধ্যে থাকে। উচ্চতা বৃদ্ধির সাথে সাথে বায়ুমন্ডল পাতলা হতে থাকে এবং বায়ুমন্ডল ও <u>মহাশূন্যের</u> মধ্যে কোন নির্দিষ্ট সীমা নেই। Karman লাইন, 100 কিলোমিটার (62 মাইল), অথবা পৃথিবীর ব্যাসার্ধ এর 1.57% এ, প্রায়ই বায়ুমন্ডল এবং মহাশূন্যে মধ্যে সীমান্ত হিসাবে ব্যবহৃত হয়। কারম্যান রেখা যা পৃথিবীর সমুদ্রপৃষ্ট থেকে ১০০ কিলোমিটার (৬২ মাইল) উপরে অথবা পৃথিবীর ব্যাসার্ধের ১.৫৭% প্রায়ই বায়ুমন্ডল এবং মহাশূন্যের মধ্যে সীমান্ত হিসাবে ব্যবহার করা হয়। বায়ুমন্ডলীয় প্রভাবসমূহ পরিলক্ষিত হয় যথন মহাকাশ্যান প্রায় ১২০ কিলোমিটার (৭৫ মাইল) উচ্চতায় অখ্যাৎ কারম্যান রেখার উপরে গমন করে। বৈশিষ্ট্য যেমন তাপমাত্রা ও গঠনের উপর ভিত্তি করে বায়ুমন্ডলকে ক্যেকটি স্তরে ভাগ করা যায়।

পৃথিবীর বায়ুমণ্ডল এবং তার প্রক্রিয়া নিয়ে চর্চা করাকে <u>বায়ুমণ্ডলীয় বিজ্ঞান</u> বা **অ্যাইরলজি** বলা হয়।<u>লিওন টিইসারিয়েক</u> <u>ডি বর্ট</u> ও <u>রিচার্ড অ্যাসম্যান</u> এই শাস্ত্রের প্রারম্ভিক পথিকৃ

वासूम ७ नीस वाष्ट्रित गड़

বায়ু বা বাতাস প্রধানত <u>লাইটোতেল, অক্সিতেন</u> ও <u>আর্গন</u> দ্বারা গঠিত এবং এই গ্যাসসমূহ একত্রে বায়ুমন্ডলের অন্যান্য প্রধান গ্যাসসমূহ গঠন করে। জলীয় বাষ্প ভরের দিক থেকে বায়ুমন্ডলের প্রায় ০.২৫%। জলীয় বাষ্পের ঘনত্বের উল্লেখযোগ্যভাবে তারতম্য ঘটে যেমন বায়ুমন্ডলের শীতলতর অংশে প্রায় ১০ <u>পিপিএমতি</u> (প্রতি মিলিয়নে কণা) হয় যা ৫% বেড়ে যায় উষ্ণ অংশে এবং অন্যান্য বায়ুমণ্ডলীয় গ্যাসের ঘনত্ব সাধারণত কোনো জলীয় বাষ্প ছাড়া শুষ্ক বায়ু জন্য প্রদান করা হয়। আ অবশিষ্ট গ্যাসসমূহকে প্রায়ই ট্রেস গ্যাস উল্লেখ করা হয়, আ যার মধ্যে গ্রিনহাউজ গ্যাসসমূহ আছে যেমন কার্বন ডাইঅক্সাইড, মিথেন, নাইট্রাস অক্সাইড, এবং <u>ওজোন।</u> পরিক্রণ বাতাসে অন্যান্য অনেক রাসায়নিক যৌগ যা সামান্য পরিমাণে অন্তর্ভুক্ত থাকে। প্রাকৃতিক উৎস থেকে সৃষ্ট অনেক বস্তু স্থানভিদে এবং ঋতুভেদে পরিবর্তনশীল স্কুদ্র আকারে উপস্থিত থাকতে পারে যেমন অপরিশোধিত বাতাসের নমুনায় <u>এরোসলের</u> উপস্থিতি। এছাড়াও থনিজ কনা, জৈব উপাদান, <u>পরাগ রেণু</u> ও গুটিবীজ, সাগরের স্প্রে এবং <u>আয়েয়গিরির ছাই</u> উপস্থিত থাকে। বিভিন্ন শিল্প দূষকসমূহ যেমন ক্লোরিন (<u>মৌল</u> বা <u>যৌগ</u> আকারে), ক্লোরিন যৌগ এবং পারদ মৌন বাষ্প প্রভৃতি গ্যাসীয় অথবা এরোসল রূপে বাতাসে উপস্থিত থাকতে পারে। সালফার যৌগ যেমন <u>হাইডোজেন সালফাইড</u> এবং <u>সালফার ডাইঅক্সাইড</u> (SO₂) প্রাকৃতিক উৎস থেকে অথবা শিল্প কলকারখানার দৃষিত বাতাস থেকে আহরিত হতে পারে।

শুষ্ক বায়ুমণ্ডল গঠন পরিমাণ অনুসারে

পিপিএমভি: <u>প্রতি মিলিয়নে কণা</u> পরিমাণ অনুসারে	
গ্যাস	পরিমাণ
<u>নাইট্রোজেন</u> (N ₂)	৭৮০,৮৪০ পিপিএমভি (৭৮.০৮৪%)
অক্সিজেন (O ₂)	২০৯,৪৬০ পিপিএমভি (২০.৯৪৬%)
আর্থন (Ar)	৯,৩৪০ পিপিএমভি (০.৯৩৪০%)
কার্বন ডাইঅক্সাইড (CO₂)	৩৯৭ পিপিএমভি (০.০৩৯৭%)
<u>নিয়ন</u> (Ne)	১৮.১৮ পিপিএমন্ডি (০.০০১৮১৮%)
হিলিয়াম (He)	৫.২৪ পিপিএমভি (০.০০০৫২৪%)
<u>মিখেন</u> (CH4)	১.৭৯ পিপিএমভি (০.০০০১৭৯%)
<u>্রিপ্টন</u> (Kr)	১.১৪ পিপিএমভি (০.০০০১১৪%)
<u>হাইড়োজেন</u> (H ₂)	০.৫৫ পিপিএমন্ডি (০.০০০০৫৫%)
<u>নাইট্রাস অক্সাইড</u> (№2O)	০.৩২৫ পিপিএমভি (০.০০০৩২৫%)
কার্বন মনোক্সাইড (CO)	০.১ পিপিএমভি (০.০০০০১%)
<u>জেনন</u> (Xe)	০.০৯ পিপিএমভি (৯×১০ ^{-৬} %) (০.০০০০০৯%)
<u>ওজোন</u> (O ₃)	০.০ to ০.০৭ পিপিএমভি (০ থেকে ৭×১০ ^{-৬} %)
নাইট্রোজেন ডাইঅক্সাইড (NO₂)	০.০২ পিপিএমভি (২×১০ ^{-৬} %) (০.০০০০০২%)
<u>আয়োডিন</u> (I ₂)	০.০১ পিপিএমভি (১×১০ ^{-৬} %) (০.০০০০১%)
আ্মানিয়া (NH3)	ট্রেস গ্যাস
উপ্ৰোক্ত শুষ্ক বামুমণ্ডলে বিদ্যমান না:	
<u>জলীয় বাষ্প</u> (H ₂ O)	~০.২৫% সম্পূর্ণ বায়ুমণ্ডলের ভর দ্বারা, স্থানীয়ভাবে ০.০০১%–৫% ^[৬]

বায়ুমণ্ডলের গঠন

প্রধান স্ত্রসমূহ

সাধারণত বামুমন্ডলের উচ্চতা বৃদ্ধির সাথে সাথে বামু চাপ এবং ঘনত্ব হ্রাস পায়।কিন্তু,তাপমাত্রার সঙ্গে উচ্চতায় আরো জটিল সমীকরণ আছে এবং কিছু অঞ্চলে তাপমাত্রা তুলনামূলকভাবে স্থির বা এমনকি বৃদ্ধি পেতে পারে উচ্চতা বাড়ার সাথে সাথে।তাপমাত্রা ও উচ্চতার সাধারণ পরিলেথ ধ্রুবক এবং বেলুল সাউন্ডিং দ্বারা চেনা যায়।তাপমাত্রার এই আচরণ দ্বারা বামুমন্ডলীয় স্তর মধ্যে পার্থক্য নির্ণয় করা যায়।এই ভাবে,পৃথিবীর বামুমণ্ডল পাঁচটি প্রধান স্তরে (একে বামুমণ্ডলীয় স্তরবিন্যাস বলা হয়) ভাগ করা যায়।সর্বোচ্চ থেকে সর্বনিন্ন পর্যন্ত এই স্তরগুলো হচ্ছেঃ

- এক্সোমণ্ডলঃ > ৭০০ কিলোমিটার (>৪৪০ মাইল)
- তাপমণ্ডলঃ ৮০ থেকে ৭০০ কিলোমিটার (৫০ থেকে ৪৪০ মাইল)
- মেসোমগুলঃ ৫০ থেকে ৮০ কিলোমিটার (৩১ থেকে ৫০ মাইল)
- স্ট্র্যাটোমণ্ডলঃ ১২/১৫ থেকে ৫০ কিলোমিটার (৭/৯ থেকে ৩১ মাইল)
- ট্রপোমণ্ডলঃ ০ থেকে ১২/১৫ কিলোমিটার (০ থেকে ৭/৯ মাইল)

<u>এক্সোমণ্ডল</u> হচ্ছে পৃথিবীর বায়ুমন্ডলের সবচেয়ে দূরবর্তী স্তর্<u>য এক্সোবেস</u> থেকে শুরু হয়ে ৭০০ কিলোমিটার উপরে বিস্তৃত এবং সমুদ্রতল হতে প্রায় <u>চাঁদের</u> দূরত্বের অর্ধেক পথ।এটি প্রধানত হাইড্রোজেন, <u>হিলিয়াম</u> এবং কিছু ভারী <u>অনুসমূহ</u> যেমন নাইট্রোজেন, অক্সিজেন এবং কার্বন ডাইঅক্সাইড দিয়ে গঠিত।এই অণু ও পরমাণুসমূহ পরস্পর থেকে এত দূরে থাকে যে একে অপরের সঙ্গে সংঘর্ষে লিপ্ত হয় না ফলে বায়ুমন্ডল আর গ্যাস হিসাবে আচরণ করে না।এই সকল মুক্ত ভ্রমনরত কণাসমূহ নিক্ষিপ্ত বস্তুর নির্দিষ্ট আবক্র পথ অনুসরণ করে।এই স্তুরে বায়ু খুবই হালকা।

তাপমণ্ডল প্রায় ৮০ কিলোমিটার (৫০ মাইল;২৬০.০০০ ফুট) উপরে অবস্থিত এবং <u>মেসোবিরতি</u> থেকে <u>থার্মোবিরতি</u> পর্যন্ত এই স্থরের তাপমাত্রা উচ্চতা বৃদ্ধি সঙ্গে সঙ্গে বাড়তে থাকে যা এক্সোমণ্ডলে প্রবেশ করলে উচ্চতার সঙ্গে সঙ্গে <u>ধ্বুবকু হয়।যেহেতু</u> থার্মোবিরতি এক্সোমণ্ডল নিচে অবস্থিত তাই একে এক্সোবেসও বলা হয়।এর গড় উচ্চতা পৃথিবী থেকে প্রায় ৭০০ কিলোমিটার কিন্ধু প্রকৃতপক্ষে সৌর ক্রিয়া ও ব্যাপ্তি সঙ্গে পরিবর্তিত হয় ৫০০ থেকে ১০০০ (৩১০-৬২০ মাইল; ১৬০০০০০-৩৩০০০০০ ফুট) কিলোমিটার পর্যন্ত। এই স্তরের তাপমাত্রা সর্বোচ্চ ১,৫০০° <u>সেলসিয়াস</u> (২,৭০০° ফাঃ) পর্যন্ত হয়। আন্তর্জাতিক মহাকাশ স্টেশন এর কক্ষপথ এই স্তরের ৩২০ থেকে ৩৮০ কিলোমিটারের (২০০ এবং ২৪০ মাইল) মধ্যে অবস্থিত। <u>মেরুজ্যোতি</u> যা উত্তর গোলার্ধে অরোরা বোরিয়ালিস (aurora borealis) এবং দক্ষিণ গোলার্ধে অরোরা অস্ট্রালিস (aurora australis) নামে পরিচিত তা মাঝেমধ্যে তাপমণ্ডল এবং এক্সোমণ্ডল নিচের অংশ দেখা যায়।

মেসেমণ্ডল সমুদ্রপৃষ্ট হতে ৫০ কিলোমিটার (১৬০,০০০ ফিট ৩১ মাইল) উপরে স্ট্রাটোবিরতি থেকে শুরু হয়ে মেসোবিরতি পর্যন্ত প্রায় ৮০ থেকে ৮৫ (৫০-৫৩ মাইল; ২৬০০০০-২৮০০০০ ফুট) কিলোমিটার এলাকা জুড়ে বিস্তৃত।উল্কাপিন্ড সাধারণত ৭৬ কিমি থেকে ১০০ কিমি এর মধ্যে উচ্চতায় মেসোমণ্ডল দেখা যায়।তাপমাত্রা মেসোমণ্ডলে উচ্চতা বাড়ার সঙ্গে সঙ্গে ব্রাস যায়।মেসোমণ্ডলের উপরে অবস্থিত মেসোবিরতিতে তাপমাত্রা এত হ্রাস পায় যে এটিই পৃথিবীর সবচেয়ে শীতলতম স্থান এবং ঐ স্থানের গড় তাপমাত্রা প্রায় -৮৫° সেলসিয়াস (-১২০° ফাঃ, ১৯০ <u>কেলভিন</u>)।এই উচ্চতায় তাপমাত্রা -১০০° সেলসিয়াস (-১৫০° ফাঃ; ১৭০ কেলভিন) পর্যন্ত হ্রাস পেতে পারে। এই স্থারের ঠান্ডা তাপমাত্রার কারণে জলীয় বাষ্প জমাট বাঁধে।

স্ট্রাটোমণ্ডল অঞ্চল পৃথিবী থেকে ১২/১৫ কিলোমিটার (৭.৫/৯.৩ মাইল, ৩৯,০০০/৪৯,১০৪ ফুট) উপরে ট্রপোবিরতি হতে শুরু হয়ে স্ট্র্যাটোবিরতি পর্যন্ত ৫০ থেকে ৫৫ (৩১-৩৪ মাইল; ১৬০,০০০- ১৮০,০০০ ফুট) কিলোমিটার এলাকা জুড়ে বিস্তৃত।স্ট্রাটমণ্ডলে শীর্ষে বায়ুমন্ডলীয় চাপ সমুদ্র পৃষ্টের ১০০০ ভাগের এক।ওজোন স্তুর দ্বারা অতিবেগুনি রশ্মির বিকিরণ শোষণ বৃদ্ধি কারণে উদ্ভতার সঙ্গে এই স্তরের তাপমাত্রা বাড়ে।উপোবিরতিতে তাপমাত্রা -৬০° সেলসিয়াস হতে পারে (-৭৬° ফাঃ; ২১০ কেলভিন),স্ট্রাটমণ্ডলে উপরে অনেক গরম।

উপোমণ্ডল ভূপৃষ্ঠ থেকে শুরু হয় এবং প্রায় ১২/১৫ কিলোমিটার উচ্চতায় উপোবিরতি পর্যন্ত বিস্তৃত,যদিও এই উচ্চতার তারতম্য ঘটে আবহাওয়ার কারলে যা মেরুতে প্রায় ৯ কিলোমিটার (৩০,০০০ ফুট) এবং বিষুবরেখায় প্রায় ১৭ কিলোমিটার (৫৬,০০০ ফুট)। আ উপোমণ্ডল সবচেয়ে বেশি উওপ্ত হয় ভূপৃষ্ঠ কর্তৃক বিকিরিত তাপশক্তি দ্বারা,তাই সাধারণত উপোমণ্ডল সর্বনিম্ন অংশ উষ্ণ এবং উচ্চতা বৃদ্ধির সঙ্গে তাপমাত্রা হ্রাস পায়।মূলত সমস্ত আবহাওয়ার উপাদাল যেমন মেঘ ইত্যাদিসহ উপোমণ্ডল বায়ুমণ্ডলের ভরের প্রায় ৮০% ধারণ করে। আ উপোবিরতি হচ্ছে উপোমণ্ডল ও স্ট্রাটোমণ্ডলের মধ্যে সীমারেখা সরুপ।